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Abstract — The problem of simultaneous transfer of heat from a fluid of finite extent to the ambient and to
a solid of finite thermal conductivity is solved. The general solution is in the form of an infinite series with
the Biot number, the thermal extent ratio H, the ambient loss parameter E and the ambient temperature
V, as parameters; the series shows strong exponential decay so that a few terms suffice for most
applications. The solution is an extension and refinement of the classical calorimeter problem. The results
find application in the analysis of (and design of equipment for) continuous exchange involving
suspended solids. The form of the solution is sufficiently simple for optimisation of insulation thickness,
residence time and other process parameters. For limiting values of the parameters simplified solutions
are presented, for instance for the double pipe heat exchanger with ambient loss.
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NOMENCLATURE g, component of dimensionless temperature
A, heat-transfer area between ambient and [defined in equation (32)];
fluid [n?]; H, thermal extent ratio (in batch case), which
C,  heatcapacity [Jkg 'K ']; is ratio of the enthalpy rates in the
G, mass rate [kgs™']; continuous case ;
h, heat-transfer coefficient between solid and Kn, n"™ coefficient in dimensionless temperature,
fluid [Wm~2K™1]; equation (13);
L, position in contactor [m]; s, Laplace variable corresponding to 7;
L, length of contactor [m]; V,  dimensionless temperature;
k, thermal conductivity of solid X, dimensionless radial variable within the
[Wm 'K™1]; sphere;
M, mass[kg]; ¥, variable of the transcendental equation
r radial position within sphere [m]; (15);
R, radius of sphere {m]; Vus n™ root of the transcendental equation,
L contact time of solid and fluid [s]; a parameter of the solution.
S, flow area of contactor [m?];
T,  temperature [K]; Greek symbols
U,  heat-transfer coefficient between fluid and & error in energy balance solution, a function
ambient [Wm™2K™']; of 7;
o, thermal diffusivity of solid [m?s™'}; T, Fourier number;
B; A, defined in text. @, the LHS of equation (15);
v, the RHS of equation (15).
Dimensionless quantities
Bi,  Biot number between solid and fluid ; Subscripts
E, ambient loss parameter ; a, ambient ;
E*,  ambient loss parameter used when k = oo; c centre of solid ;
fy component of dimensionless temperature A fluid ;
[defined in equation (32)]; fi, fluid inlet (counter-current case);
SO,  initial fluid;
*A substantial part of this work was done while the Je, fluid asp redicted by the energy balance
authors were with the Department of Chemical Engineer- solution;
ing, University of the Witwatersrand, Johannesburg, 2001 S, solid ;
Republic of South Africa. 50, initial solid;
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se, solid as predicted by the energy balance

solution;
o, surfaces.

Superscripts
. integrated average defined as:

. 3[R

0= FJ r’Q dr, for any quantity Q;
0

, Laplace transform of a quantity.

1. INTRODUCTION

THE NON-ADIABATIC calorimeter problem is the
logical extension of the adiabatic calorimeter pro-
blem [1-3].

It can be transformed to the following granular
solid—fluid heat- or mass-transfer operations: (a) co-
current (or countercurrent) exchange in a moving
bed contactor with heat loss to ambient; (b)
exchange between a batch of solids and a well mixed
fluid stream in a fluidised bed.

This paper extends previous analyses that exist for
the adiabatic case [4-6] and supplements the
analysis of Siegmund, Munro and Amundson [7] for
the non-adiabatic case.

Siegmund et al. assume that the mechanism of
heat transfer to the ambient is essentially conduction.
This assumption is valid in fixed beds where the fluid
flow is such that one may assume eddy conductivity
to be constant across any cross-section; it is not a
useful assumption in dilute fluidised beds and similar
systems. Here one can assume that the resistance to
heat exchange with the ambient is limited to the wall
region ; this resistance comprises a forced convection
term on the inside and resistance due to insulation
and free convection on the outside. We simplify and
assume that the heat loss to the ambient is governed
by an overall heat-transfer coefficient that does not
vary along the contactor.

2. FORMULATION OF THE PROBLEM

We examine the cooling (or heating) of a sphere of
uniform initial temperature by a moderately stirred
fluid contained in a bath which is not well insulated
and therefore capable of losing heat to the ambient.
By moderately stirred fluid we mean a fluid that is
sufficiently well stirred that it has a bulk temperature
but that heat transfer from the fluid bulk to the solid
surface is impeded by a film resistance.

This differs from a perfectly stirred fluid where the
bulk fluid and solid surface temperature are the
same.

We assume further that: (a) the film coefficient
between the solid surface and the fluid is constant;
(b) the overall heat-transfer coefficient between the
fluid and the surroundings is constant.

We feel that the above model is an optimum trade-
off between a desire to represent the real situation
accurately and the necessity to have a tractable
problem. We do not consider, for example, spatial
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variation of the heat-transfer coefficient due to
natural convection. The differential equations
governing the rate of heat transfer are the equation
for heat conduction, a heat balance at the solid
surface and the heat balance for the whole system:

6—T—’=E?—zi’ for 0<t<o0,0<r<R, (1)
a r or ’ =
—kEI = h[T(R, t) - T;(1)] )
or [,=R = 4
—M,Cfdj=MCd—T’+UA(T—T) 3)
dt T Jo e
where

3 R
T.= FJ r*T(r, t)dr.

0o

We have the following boundary and initial
conditions to complete the system of equations

7;(7', 0) = 1;0y (4)
AT 5
P |’=0 = (5)
T;’(O) = Tfo~ (6)

We introduce the following dimensionless variables:

V.= (T,— Tso)/(.l}o_ T;o)s
Vf = (Tf" T;o)/(Tfo" Tso),
x =r/R,

7 = at/R?,

and the following parameters

Vo = (T,— T;o)/(T;o— To), the asymptote (t — o)
of V,and V,,
Bi = hR/k, the Biot number,
H = M,C,/M ;C,, the thermal extent ratio, and
E = UAR?/aM ;C , the ambient loss parameter
analogous to a Biot number.

The set of equations (1)-(6) becomes

oxV, &xV,
—=——for0<r<00,0sxx1 )
Jt Ox

ol Bi(V,— V/],=1) (®)
—_— = 1 - =
ax l_‘:l S slx=1
1% dv,
f s
———=H—+ E(V,-V, 9
dt dt Fr ) ®)
V,(x,0)=0 (10)
av,
= =0 (11)
ax 'x=0
V(0)=1 (12)

The solution to the above set of equations is readily
found by applying Laplace transformation (see
Appendix).



The non-adiabatic calorimeter problem 101

3. PRESENTATION OF THE SOLUTION

The solution is:

=V, - EV,—yH)Kn——"-exp{—y?i1).
Vo=V,=~2 3 (EV,~yd) nxsmy p(—ya1)

n=1

The coefficients Kn are given by:

siny,x)} (13)

Bi(E+3BiH — y?2)

Kn

The y, are the solutions of the equation

tany 3BiH+E—y?
y  (Bi—-1)(y*~E)+3BiH’

(15)

For convenience equation (13) has been written in a
form that incorporates y, = 0 separately and takes
account of the fact that y, = —y_, by multiplying
the series by 2. Thus we have to consider only those
solutions of (15) that lie in the half-domain Real
{y}=0

= Yo+ [Bi(Bi—1)— 6BiH —2E]y? + [9BH(1 + H)+ (6BiH — 2Bi* + 2Bi + E)E]y? + Bi(Bi— 1)E — 3B’HE

(14)

surface:

V,=V,~2 ¥ (EV,—y))Knexp(—yi)

n=1

(17
solid average:

Vo= V,+6 ¥ (EV,—y))Kn

=1

(yn cos yn_Sin yn)
X =
yasiny,

exp(—yit) (18)

%Yy Ve

- o]

o

F1G. 1. Temperature-distance profiles within the solid for Bi = 10; H = 1; E = 1 and ¥, =0 at various
dimensionless times. With temperature time profile for fluid, surface, average and centre temperatures
inset.

Figure 1 shows the variation of V, with x for
several values of t and V}, V,, ¥, V, against 1 for
Bi=10,H=1E=1.

Local, fluid and average temperatures

Often we are not interested in the temperature
distribution throughout the solid but only in the
minimum, maximum and average solid temperatures.
The surface, centre and average temperatures are of
interest, as well as the fluid temperatures. These
temperatures are given by

centre:

¥ - Kny,
V=V - EV,~y?
¢ a 2 2 ( a yn)sin

n=1

exp(—yit) (16)

n

fluid:
1 9V,

V=V, +——
d Bi ox |,

=V,-2 ¥ (EV,—y})Kn
n=1

N (I+y,co8y,—siny,)
Bisiny,

exp(—y?r). (19)

4. ENERGY BALANCE SOLUTION
We now derive separately the solution for the
special case k — 0.
In this case T, =T, = T, = T, and we may write



102 J. W. HEMMINGS and J. KERN

the governing equations as

dT,
M,C,—= = ~4nR*W(T,—T,)

3 20)
M,C,d—& = Mscsirl—;+ UA(T,-T) (21)
dt dt
with T,(0) = Ty, T;(0) = T}, as before.
Define:
E* = UAH/AnR*h (22)
and

™ = 4nR*ht/M C, 23)

to obtain the following set of dimensionless
equations

dy,

= ViV (24)

dv dr, +EXV,~ V) (25)
dr* dr* ;e

V,(0)=0 (26)

V;00)= 1. @7

These equations are essentially those given by
Kern [8] in the analysis of a heat exchanger with
ambient loss.

The solution is

_ ., [2-6HawT AP
V,,—V,+[ A jlexp[ 3 :l

2—(B-A)Y, (A+B)c*
—[———-—2A ]exp[--——————z ] (28)
Vyo = K+{[2‘(B+A)%}[2+A‘5]}
4A
« ex [(_A;ﬁ?f]
PI7
_{[2—(5—A)Va][2'“A“ﬂ]}
A
xexp[—(:‘—%i] 29)

where § =H+E*—1
A = (B*—4E*)12

When Bi is very small, but not zero, the true
solution (13) is approximated by the encrgy balance
solution (28) with E* and 1* the following functions
of E, Bi, t:

E* = E/3Bi (30)
t* = 3Bir. 31)

We recall that for simpler versions of the problem
(H=E=0)Bi<0.1 is an accepted criterion for
applying the energy balance solution. We see from

Fig. 2 that for the general problem such a criterion is
safe for t > 0.01 and possibly for smaller t as well.

Note that the error in the energy balance solution
now has two components, ¢, and ¢,:

true solution:

Vo= fG)+V.g(x) (32)
energy balance solution:
Ve = f@[1+&,(0)] + Vog(t)[1+e,()]  (33)

fractional error:
. Je1+Veeag
f+Vag

and hence for any fixed ¢
¢ as V,-0
,
—g as V,» o

Er has no proper maximum, so the larger of ¢, and
&, is the maximum.

In Fig. 2 f(z), g(r), &, (1), £,(t) are plotted against 1
for001l <t < 10forthecase Bi=01, H=1,E=1.
The functions analogous to f and g in the fluid,
surface and centre temperatures (f,, f.. f7 G0, 9. 91)
are also plotted, the functions analogous to ¢, and ¢,
were too small to be plotted for the fluid tempera-
ture. Note that on the graph the centre, average and
surface temperatures coincide.

From Fig. 2 |[Er| < 3%.

The energy balance solution is clearly much easier
to apply than the exact solution since we do not need
to calculate the roots of a transcendental equation.
In addition the full solution may become very
sensitive to the accuracy of the first root of the
transcendental equation. However, this phenomenon
occurs predominantly at very small Biot numbers
where the energy balance solution is to be preferred

anyway.

5. LIMITING SOLUTIONS FOR HIGH
AND LOW PARAMETER VALUES

For cases where one of the parameters Bi, H, E
has a value that is much larger or smaller than the
others, the limiting solutions given below will
provide useful approximations and are considerably
easier to use than the exact result. These solutions
fall into two classes, those that may be obtained by
simplifying the general solution (13) and those which
cannot be obtained in this way because some of the
equations (7)-(12) become meaningless.

(1) Bi— oo and H, E stay finite; the transcenden-
tal equation (15) reduces to

tany 3H

= 34
y y*—E+3H (34)
and the coefficients Kn reduce to
3H
. (35)

Kn =
"= Y [SH(1+H)_2E]y? + E*— 3EH

Note that with E—0 our solution reduces to
Paterson’s { 3}.
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Fi1G. 2. Dimensionless temperature-time profiles for low Biot number (Bi=0.1; H=1,C =1).

(2) Bi— 0 and H, E stay finite; we have

tan
Y1 (36)
y
and
Kn=0. (37)

This implies V, = V,, so the result from equations
(13)-(15) is not valid. This happens because Bi =0
implies dV,/0x = 0 and equation (7) becomes 0 = 0,
so (7) and (8) fall away and are replaced by (20), (11)
is no longer necessary and the remaining equations
(9), (10), (12) together with (20) lead to the energy
balance solution (28).

(3) H—0; E, Bi non-zero. Physically this is the
case of a very large fluid extent losing heat to
ambient, so the fluid temperature should depend
only on E. H = 0 implies there is no solid, so Bi is
not defined, and equations (7), (8), (10), (11) become
meaningless. (9) reduces to

Y v, (38)
et 7
Vf = Va+(Vf0—Va)exp(—TT) (39)
where
UAt
tt=Et= .

(4) H— oo; E, Bi finite. This implies M,C; — o0
(f M;C; -0, E—» ) and is not a well posed
problem.

(5) E—0; H, Bi finite. This reduces to the case
treated in our earlier paper [2]. Note that in the
present formulation V, is defined relative to the
ambient temperature, but the ambient is no longer
involved in the process. However, for E # 0, T, can
be interpreted as the equilibrium temperature of the
system. So redefine 7, for E =0 to be the equilib-
rium temperature

- MC T+ MCT,
. M,C,+ M,

and regenerate our earlier result [2], which in the
present nomenclature is:

tan y 3BiH —y?
= T (40)
y (Bi—1)y*+3BiH
Kn(EV,—y;) =
Bi(3BiH — y?) @)
vo L [Bi(Bi—1)—6BiH]y? +9Bi*H(1+H)’
(6) E— o0; H, Bi finite.
tan y -1
= (42)
y (Bi—1)
BiV,
Kn(EV,—y) = (43)

y2+Bi(Bi—1)

As expected, H is no longer a parameter since E = oo
implies that the ambient is a continuation of the fluid
[since (9) implies ¥V, = ¥,] so we have heat transfer
to an infinite fluid at V.

The above solution may be compared to Carslaw
and Jaeger’s [9] solution for heat transfer to an
infinite fluid, which in our nomenclature is:

12 y2+(Bi—1)?

2
A exp(— 21- -
POV i sy w T

V,

a

1
xsin(y,,x)f xsin(y,x)dx. (44)
]

To show that the solutions are equivalent we must
show that

1 B
[yf+(Bi—1)2]f xsin(y,x)dx = — ! ;
o siny,

Left hand side:

sin y,—y,cos y,
(siny yz sy)‘ 45)

Square equation (42), invert and add y? to each side
to get

LHS = [y2+(Bi—1)?]

y(1+cot?y) = y* 4+ (Bi—1)? (46)
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use 1/sin2y = 1+cot?y in (46), and (46) in (45) to
get
—y,coty, Bi

1
LHS = . =
sin y,

siny,’
So equation (45) is an identity and therefore the
solutions are the same.

6. APPLICATION TO CONTINUOUS PROCESSES

There are several systems of industrial importance
that obey the same equations as the non-adiabatic
calorimeter.

(1) Co-current moving bed contactor (see Fig. 3)

If the fluid and solid streams are both in plug flow
then the time that the solids have spent in the
contactor when they are at position ! is given by

Ip,S
t= . 47
G, (47)
Equations (1), (2), (4)-(6) apply.

The overall heat balance on the element of

contactor between / and I+dl is

) di
~G,C,dT; = G.C.AT,+ UV (T;—T,). 48)

Under many circumstances the assumption that
U(l) = U = constant is approximately true and in
that case equations (1), (2), (48), (4)-(6) lead to the
set of equations (7)-(12). Where ¥, V,, V,, x, Bi have
the same definition as previously and , H and E are
given by

ap Sl 49)
T=
G,R?
G,C,
H= (50)
chf
UAR?G,
E=——r. (51)
aG,C,p,S

In contrast with the calorimeter where 0 < 7 < o
we now have

ap,SL
G.R*’

This does not affect the solution since we can
increase the length of the column from L to L
without altering the solid or fluid temperature fields
in the section of column 0 <! < L. This carries the
implication that it is possible to find the length
required for a given duty without iteration.

As is the case with heat exchangers with ambient
loss [8], it is not always possible to design a
contactor for a given duty when the value of U is
specified.

For instance, if we are attempting to heat up a
solid using a hot fluid, heat loss to the ambient may
be so large that the solid can never reach the desired
temperature. This is because the solid average
temperature reaches a maximum whose position and

O<t<

SOLIDS INLET

FLUID INLET
MASS RATE Gs MASS RATE G¢
HEAT Pgnocurv Cy HEAT CAPACITY C4
RATURE Tyo
DIMENSIONLESS DMENSIONLESS ™
TEMPERATURE 0 TEMPERATURE |
CONTACTOR
t LENGTH L

AREA OF CROSS
SECTION S

SURFACE AREA A

.

61_1__ ______ _

AMBIENT TEMPERATURE Tg

DIMENSIONL ESS
TEMPERATURE Vg

SOLID OUTLET

FLUID OUTLET
AVERAGE TEMPERATURE , (L)

TEMPERATURE T (L}

F1G. 3. Co-current moving bed contactor.

SOLIDS WNLET
MASS RATE Gg
HEAT CAPACITY Cg
TEMPERATURE Tso
DIMENSIONLESS
TEMPERATURE O

FLUID OUTLET
MASS RATE G
HEAT CAPACITY C¢
TEMPERATURE Ty,
IMENSIONLESS

DIl
TEMPERATURE |

T

SOLID OUTLET

N FLUID INLET
AVERAGE TEMPERATURE Ty (L)

TEMPERATURE Ty = Ty (L)

FiG. 4. Counter-current moving bed contactor.

value are functions of the magnitude of heat loss to
the ambient. One application of the above model
would be the optimisation of the insulation thickness
on a high temperature contactor.

(2) Counter-current moving bed contactor (see Fig. 4)

The governing equations are almost identical to
those of the co-current case, differing only in the heat
balance equation which becomes

d
G,C,dT; = G,C,dT,+ U(NA I (T,—T,). (52)
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So in the present case we have to redefine E and H,
ie.

UARZG,
=—— (53)
aG,C,;p,S
G,C
H= -2 (54)
chf

Note that E and H are now always negative. And
equations {7)-(12) can be generated by defining the
other parameters and variables in exactly the same
way as in the co-current case.

It is seen that the problem has been transformed
into a hypothetical non-adiabatic calorimeter con-
taining a fluid of negative heat capacity, and that we
have specified the outlet rather than the inlet fluid
temperature as T,,. Without this modification a
change in length of the contactor, leaving T, fixed,
would change the temperature profile throughout
the contactor and the domain of t would no longer
be equivalent to a semi-infinite domain. Although in
practice we would not always know the fluid outlet
temperature to start with, it is easily determined as
follows:

Tp—To _
To—Ty Veli=p. (55)
The solution V; is known in the form
L-To
Vi=S(@)+—-4g(1) (56)
! Tro—Ta
hence
(T3~ To) gl =L
Tro—To=—"""—-+(T,-T, . (57

Thus T, ~ T,; may be calculated directly given L
and the other parameters and hence the other
dimensionless temperatures easily converted to ac-
tual temperatures.

On the other hand, this means that calculation of
column length required for a given outlet solids
average temperature requires iteration on L, unlike
the co-current case where L may be calculated
directly.

The remarks about feasibility and optimisation of
insulation thickness made for the co-current case still
apply.

(3} Cascade of fluidised beds (see Fig. 5)

If there are sufficiently many stages, the fluidised
bed cascade behaves approximately like a counter-
current plug flow contactor and may be treated as
such (see the previous case). With few stages, on the
other hand, the analysis of Kasten and Amundson
[10] may be used if heat loss to the ambient is small.

In passing through each fluidised bed of the
cascade a particle spends some time in counter-
current flow, some in cross flow and some in co-
current flow. So the performance of such a cascade,
with a dimensionless mean residence time £, would
be better than that of a co-current contactor of
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FLUID OUTLET

SOLIDS
INLET

——b e ———— el

~" T MORE STAGES

. souios
OUTLET

FLUID INLET
F1G. 5. Cascade of fluidised beds.

MASS RATE G¢
TTEMPERATURE Te 1)

FLUID OUTLET

SOLIDS . FLUID
MASS M, .. MASS ENCLOSED Mt
HEAT CAPACITY Cy . TEMPERATURE Tt [1)
INITIAL " .
TEMPERATURE Tyo v .e’

- *

FLUID INLET

MASS RATE G¢
TEMPERATURE Tq
MEAT CAPACITY C¢

NOTE
'CONDITIONS MUST BE SUCH THAT ASSUMPTION OF A
SINGLE BULK FLUID TEMPERATURE IS REASONABLE,
FOR INSTANCE IF AGITATION BY SOLID 1S LARGE

F1G. 6. Fluidised bed with a batch of solids and a stream of
fluid.

dimensionless length 7 and worse than that of a
similar counter-current contactor (the Biot number
applicable to the cascade, not that which would
apply to a true plug flow contactor must of course be
used). So the solution for the co-current contactor
would lead to a conservative design for the cascade
and the performance of the equivalent counter-
current contactor would be a measure of how
conservative the design is.

{4) Fluidised bed with a batch of solids and continuous
flow of fluid (see Fig. 6)

When it is reasonable to assume that the fluid has

a bulk temperature T,(t), equations (1), (2), (4)-(6)
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apply and the energy balance reads
~M,C,dT, = M,C,dT,+ G,C (T, ~T,)dt. (58)

We can make the system of equations (1), (2), (58),
(4)-(6) dimensionless and generate equations
(7)-(12) by defining Bi, H, x, 1, V,, V, V, as in the
batch case and further

=% R
Mo

Here T, is the inlet fluid temperature and E is the
dimensionless reciprocal mean residence time of the
fluid.

The above case has a fairly common mass transfer
analogue, namely the drying of grain or peas, where
moisture movement is diffusion controlled inside the
solid and convection controlled at the surface. For
such a system, the mass-transfer problem fits the
above model and the heat-transfer problem is
essentially that of transfer from the fluid through a
film to a heat sink on the solid surface and is thus
easily dealt with.

(59)

7, DISCUSSION OF THE ROOTS OF THE
TRANSCENDENTAL EQUATION
In cases where we cannot use the energy balance
solution, it is necessary to solve the transcendental
equation:

tany 3BIH+E—y*
y  (Bi—1)(y*—E)+3BiH’

The series solution for the temperature contains
terms in exp{— y21). In the batch case y, must be real
for all n, otherwise the temperature would not tend
to V, as time becomes infinite.

In the continuous-counter-current application this
is 1o longer true and we expect exponential growth
terms in the T vs [ profile if the solids heat capacity
rate is greater than that of the fluid so that the fluid
undergoes most of its temperature change near its

(15)
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inlet, i.e. the solid outlet. So for H < —1 there are
some purely imaginary roots whereas for H > —1 all
the roots are real.

More general complex roots may always be ruled
out since they contribute an oscillating component
to the solution, which is physically impossible. Still,
when solving equation (15) for its roots, one has to
take care in finding all the roots that play a
significant part in the solution. A qualitative check
may be obtained from the answer at r = 0. If the
latter is not satisfactory one may examine one of the
following possible reasons: (a} not enough terms
considered, ie. truncation error; (b} roots not
located accurately enough; {c) roots that are signi-
ficant have been inadvertently omitted.

The first and second are easy to deal with, the
third is not so easily dealt with. However, if there is
reason to suspect that roots have been omitted, it is
worthwhile to draw a graph of

3BiH + E~y*
3BiH +{Bi— 1){y* —E)
against y

such as Fig. 7 whichisfor Bi=05,H=LE= 1

Depending on the parameter values there may be
one, two or even no roots within an interval from
{n—-HHm to (n+HHm.

When H < —1 there are also imaginary roots of
(15), i.e. roots of::

o) = mm;’—’i and §(y) =

tanh w w?+ E+3HBi (60)
w  (1—Bi)(w?+E)+3HBi
where w = —iy.

Again a graph may be useful.

8. CONCLUSIONS
We have solved the problem of a solid sphere in
contact with a fixed mass of fluid, which exchanges
heat simultancously with the solid and with the
ambient. The general solution for a solid of finite

| |

!
|
¥z ¢ LS

¥g ¥s

¢ ©

-5

F1G. 7. Graph of ¢{y) = tany/y and ¢(y} = (3BiH + E— y*Y[(Bi — 1)}{y* — E)}+ 3BiH] showing the first
few roots of equation (15} for Bi=05;H=1;E= 1L
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thermal conductivity is available as an infinite series
with four parameters, Bi, H, E and ¥,. Few terms of
the series suffice for most applications because the
terms contain a strong exponential decay, of the
form exp(— y21).

Some of the problems which are encountered in
solving the transcendental equation for the roots y,
may be overcome by applying appropriate checks or
drawing an appropriate graph.

The results find application in the analysis of, and
design of equipment for, continuous solid-fluid
exchange processes. Various simplified solutions for
limiting values of the parameters Bi, H, E, are
presented. Among these is the energy balance
solution for small Bi, which reduces the problem to
that of a double-pipe heat exchanger with ambient
loss.
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APPENDIX
Solution of equations (T)-(12} by Laplace transforms
Transform equations (7)—(12).
. 4
sxl, = ——x7, (61)
dav,
- =0 62
& s (62)
dav e o
s Bi[V, - V1,57 {63)
o ooy Y
sV +1 =Hs¥’,+£‘(¥§——;) 64}
- a~ 1
V=V,= 3[ x*Fdx. 65)
Q

General solution of (61)is:

xV = 4 cosh[(s)"/*x] + Bsinh[(s)'/*x].

(62) leadsto A =0

let w = (s)4/2,
Then
7 = B(w)sinh{wx) . 66)
X
{65)leads to
¥, = 3B(w)(w cosh w—sinh w)/w?. 67
{67) and (64) lead to
1+ % ~ 3HB(w)(wcosh w—sinh w})
VJ = w2+ E (68)
Apply (66)-(68) in (63) to obtain
5o Bi(l+EV,/w?) ‘ )
(w?+ E-+ 3HBi)wcosh w—[(1 — Bi}{(w?+ E}+ 3HB{] sinh w

Now use Cauchy’s integral theorem on the Mellin integral to invert the transform

_ 1 4+ i
& [Fis)] = 5 e F(s)ds = ¥ Res [e“F(s)]

y—im v, s=5
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where s; are the isolated singularities of F on the complex plane, and y is an arbitrary number such that reai {s;} > y for all
i

s; will be the poles of B(w), i.e. s; = w? where w, are the roots of:
tanhw w2+ E+3HBi
w  (1—Bi)(w*+E)+3HBi

Note that w, =0 is also a pole of B, but has been excluded from equation (70) by performing algebra on the
denominator of B that is invalid if w = 0.

(70)

sinh (wx)

Treat w, separately because is also zero here.

Use Res F(s) = lim (s— s;)F (s), which is the definition of the residue at a simple pole, for 5, = w2 = 0. We get

=3 s—s;
. 2 sinh wx B
Res[e”F(s)] = lim | w?B(w) exp(wlt)
=0 w=0 X
= lim w*B(w)
w—0
=V,
For the other singularities, which are all simple poles, use
R F(s,x, 1) i F(s,x,1) i 2wF(w?, x, 1)
= lim =lm —
v GE)  sem 4G wew dGW)
ds dw
So
Res sinh(s)"/"x e B(s)'/? = SR WX ot Res B(s)'/%.
s=5¢ x s=w}

After some differentiation we get

Res B(s)"/? = lim 2wBi(1+EV,/w?)
s=5 wow, [W2 +E+3HBi—2(l —Bi)]w sinh W(3W2+E—[1 —Bi][W2+E])COSh ” .

From (68) we get an expression for cosh w in terms of w and sinh w
_a —Bi)(w2+E)+3HBi

hw, = inhw,.
W = WA +E+3HB)
Res 35" 2w2(w? + E+3HBi)Bi(1 + EV,/w?)
s t =
Py sinh w,{[w? + E + 3HBi — 2(1 — Bi)]wi(w? + E+ 3HBi)+ [3w? + E— (1 Bi)w? + E)][(1 + Bi)wi + E) + 3HBi])

Now, since all the solutions, w;, are purely imaginary (in the batch case), we substitute y, = (—w?)'/? = iw, in the
equations, purely for convenience.
In this manner we obtain equations (13)-(15).

LE PROBLEME DU CALORIMETRE NON ADIABATIQUE ET SON
APPLICATION AUX MECANISMES DE TRANSFERT DANS LES
SUSPENSIONS SOLIDES

Résumeé —On résout le probléme du transfert simultané de chaleur d’un fluide d’étendue finie vers
I’ambiance et vers un solide de conductivité thermique finie. La solution générale est sous forme d’une
série infinie en fonction du nombre de Biot, du rapport H d’étendue thermique, du paramétre E de perte
ambiante et de la température ambiante V,; la série montre une forte décroissance exponentielle et il suffit
de peu de termes pour la plupart des applications. La solution est une extension et une amélioration de
celle du probléme classique du calorimétre. Les résultats trouvent une application dans P'analyse (et dans
le dimensionnement du matériel) de I'échange continu avec des solides en suspension. La forme de la
solution est suffisamment simple pour permettre le calcul d’optimisation de I'épaisseur d’isolant, du temps
de résidence et d’autres paramétres. On présente des solutions simples pour les valeurs limites des
paramétres, par exemple, pour le tube annulaire de I'échangeur de chaleur avec perte a 'ambiance.

DAS VERALLGEMEINERTE KALORIMETERPROBLEM UND SEINE UBERTRAGUNG
AUF AUSTAUSCHPROZESSE IN FLUID-FESTSTOFF-GEMISCHEN

Zussmmenfassung —Es wird der gleichzeitige Wirme- oder Stoffaustausch zwischen einem endlich
ausgedehnten Fluid, einem endlich ausgedehnten Feststoff von endlicher Leitfdhigkeit und einer
unendlich ausgedehnten Umgebungsatmosphiire analytisch behandelt. Die Losung des derart verallge-
meinerten Kalorimeterproblems lisst sich verschiedenartig interpretieren, so dass eine Reihe wichtiger
Austauschprozesse in Gas-Feststof-Systemen damit ausgelegt werden konnen. Wegen der notwendigen
Vereinfachung des Problems sind die zu erwartenden Ergebnisse zwar nicht immer numerisch exakt,
andererseits ermoglicht die einfache Form der Lésung weiterfiihrende Untersuchungen, etwa zum Zwecke
der Prozessoptimierung.
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3AJIAUA HEAJIMABATHUUYECKOI'O KAJIOPUMETPA MU EE MPUMEHEHHE
K NMPOLECCAM MNEPEHOCA B CYCNEH3UAX TBEPABIX YACTHUL

Annoraumu — [IpeacTasiieHO pellleHHE 3a4a4¥ ORHOBPEMEHHOI(O NEPEHOCA TEMIA OT KOHEYHOro
00BEMa KHAKOCTH B OKPYXAIOULYIO Cpely M K TBEPAOMY Tely ¢ KOHEYHOW TenJIONPOBOAHOCTLIO.
Obuice pelieHne NAETCA B BUAe OECKOHEYHOrO psga, B KOTOPBLIH B kavecTBe Ge3pa3MepHbix napa-
MeTPOB BK/IOYEHBI: 4HCA0 BHo, napamerp Temnosoro pacuumpedus H, napaMerp noreps, B OKpy-
xaromyto cpeay £ u teMnepaTtypa okpyxatoumeii cpeabl V,. [lanuptit pAa MMEET IKCHOHEHUHATbHYIO
CXONMMOCTL, TaK 4TO A NPAKTHYECKMX LeJell [HOCTATOYHO HECKOJbKHX 4ieHOB psaa. Peienue
npencrasnsetr coboil oBobwerne ¥ MOIUPHKALHIO KIacCH4eCcKo# 3ajadn kanopumetpa. Pesynerarht
MOTYT HCHOML3IOBATLCA [N AHANMIA [IPOUECCA HENPEPLIBHOFO TEMIOOGMEHA CO B3BELICHHLIMH
TBEPALIMH 4YaCTHUAMH M ANS pacyéTa COOTBETCTBYIOWNEH annaparypsl. Peiuenne HMeeT OOBOJILHO
APOCTONl BHA W MOXKET HCNONL30BATHCA AMA PAacy€Ta ONTHMAALHON TONLMHLI HIONALHMH, BPEMEHU
KOHTAKTA YacTHIL W JPYrHX mnapaMeTpos npouecca. Jlns npeaenbHbIX 3HAYEHHA NapameTpos
MpHBENEHL! YNPOIIEHHLIC PELCHNS, KaK HanpuMep, Ui TenjloobMeHnHka Tuna «Tpyba B Tpybe»
NPH HAJTHYME NOTEPb TEILIA B OKPYXKAIOUIYIO Cpeay.
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