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Abstract -The problem of simultaneous transfer of heat from a fluid of finite extent to the ambient and to 
a solid of finite thermal conductivity is solved. The general solution is in the form of an infinite series with 
the Biot number, the thermal extent ratio H, the ambient loss parameter E and the ambient temperature 
V, as parameters; the series shows strong exponential decay so that a few terms suffice for most 
applications. The solution is an extension and refinement of the classical calorimeter problem. The results 
find application in the analysis of (and design of equipment for) continuous exchange involving 
suspended solids. The form of the solution is sufficiently simple for optimisation of insulation thickness, 
residence time and other process parameters. For limiting values of the parameters simplified solutions 

are presented, for instance for the double pipe heat exchanger with ambient loss. 

NOMENCLATURE 

heat-transfer area between ambient and 

fluid [mz] ; 
heat capacity [J kg- ’ K- ‘I; 
mass rate [kg s- ‘1; 
heat-transfer coefficient between solid and 
fluid [Wm-2K-1]; 
position in contactor [m] ; 
length of contactor [m] ; 
thermal conductivity of solid 
[Wm-‘K-l]; 
mass [kg] ; 
radial position within sphere [m] ; 
radius of sphere [m] ; 
contact time of solid and fluid [s] ; 
flow area of contactor Cm*] ; 
temperature [K] ; 
heat-transfer coefficient between fluid and 
ambient [Wm-*K-l]; 
thermal di5usivity of solid [m* s- ‘1; 
defined in text. 

Dimensionless quantities 

Bi, Biot number between solid and fluid; 

E, ambient loss parameter ; 
ambient loss parameter used when k = co ; 
component of dimensionless temperature 
[defined in equation (32)] ; 

*A substantial part of this work was done while the 
authors were with the Department of Chemical Engineer- 
ing, University of the Witwatersrand, Johannesburg, 2001 
Republic of South Africa. 

9. 

K 

Kn, 

s, 
V, 
X, 

Y? 

YW 

component of dimensionless temperature 
[defined in equation (32)] ; 
thermal extent ratio (in batch case), which 
is ratio of the enthalpy rates in the 
continuous case ; 
n”’ coefficient in dimensionless temperature, 
equation (13); 
Laplace variable corresponding to z ; 
dimensionless temperature; 
dimensionless radial variable within the 
sphere; 
variable of the transcendental equation 

(15); 
nth root of the transcendental equation, 
a parameter of the solution. 

Greek symbols 

s, error in energy balance solution, a function 
ofz; 

7, Fourier number ; 

4. the LHS of equation (15); 

*9 the RHS of equation (15). 

Subscripts 

4 ambient ; 
c, centre of solid ; 

;, 
fluid ; 
fluid inlet (counter-current case); 

2 

initial fluid; 
fluid as predicted by the energy balance 
solution ; 
solid; 
initial solid ; 

99 
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se, 

0, 

solid as predicted by the energy balance 
solution ; 
surfaces. 

Superscripts 

integrated average defined as: 

Q=$ 
i 

R 
r2Q dr, for any quantity Q ; 

Laplace Gansform of a quantity. 

I. INTRODUCTION 

THE NON-ADIABATIC calorimeter problem is the 
logical extension of the adiabatic calorimeter pro- 
blem [l-3]. 

It can be transformed to the following granular 
solid-fluid heat- or mass-transfer operations: (a) co- 
current (or countercurrent) exchange in a moving 
bed contactor with heat loss to ambient; (b) 
exchange between a batch of solids and a well mixed 
fluid stream in a fluidised bed. 

This paper extends previous analyses that exist for 
the adiabatic case [4-61 and supplements the 
analysis of Siegmund, Munro and Amundson [7] for 
the non-adiabatic case. 

Siegmund et 01. assume that the mechanism of 
heat transfer to the ambient is essentially conduction. 
This assumption is valid in fixed beds where the fluid 
flow is such that one may assume eddy conductivity 
to be constant across any cross-section; it is not a 
useful assumption in dilute fluid&d beds and similar 
systems. Here one can assume that the resistance to 
heat exchange with the ambient is limited to the wall 
region ; this resistance comprises a forced convection 
term on the inside and resistance due to insulation 
and free convection on the outside. We simplify and 
assume that the heat loss to the ambient is governed 
by an overall heat-transfer coefficient that does not 
vary along the contactor. 

2. FORMULATION OF THE PROBLEM 

We examine the cooling (or heating) of a sphere of 
uniform initial temperature by a moderately stirred 
fluid contained in a bath which is not well insulated 
and therefore capable of losing heat to the ambient. 
By moderately stirred fluid we mean a fluid that is 
sufficiently well stirred that it has a bulk temperature 
but that heat transfer from the fluid bulk to the solid 
surface is impeded by a film resistance. 

This differs from a perfectly stirred fluid where the 
bulk fluid and solid surface temperature are the 
same. 

We assume further that: (a) the film coefficient 
between the solid surface and the Auid is constant; 
(b) the overall heat-transfer coefficient between the 
fluid and the surroundings is constant. 

We feel that the above model is an optimum trade- 
off between a desire to represent the real situation 
accurately and the necessity to have a tractable 
problem. We do not consider, for example, spatial 

variation of the heat-transfer coefficient due to 
natural convection. The differential equations 
governing the rate of heat transfer are the equation 
for heat conduction, a heat balance at the solid 
surface and the heat balance for the whole system : 

aT, _ a aq 

at 
- - - for 0 <t < co, 0 ,< r < R, (I) 

r arz 

aKl 

-!( dr !,=, = h[T,(R, r) - 7-,(r)] (2) 

dp 
-M,C,% = M,Csx=+ UA (T/-T,) (3) 

where 

We have the following boundary and initial 
conditions to complete the system of equations 

Ur.0) = T,,, 

aa 
dr IrzO =O 
T,(O) = 7-f,. 

(4) 

(5) 

(6) 

We introduce the following dimensionless variables: 

v, = (T,- %)/V-/0- GJ), 

v, = (T, - T&)/(7-,, - T,), 
x = r/R, 

5 = cxtJR2, 

and the following parameters 

V, = (K - T,,)/(T,,- T,,), the asymptote (t + co) 
of V, and V,, 

Bi = hR/k, the Biot number, 
H = M,C,/M,C,, the thermal extent ratio, and 
E = UAR’/aM&,, the ambient loss parameter 

analogous to a Biot number. 

The set of equations (l)-(6) becomes 

axv, a5v, 
dr 

- - for 0 ,< r < w, 0 < x < 1 
6x2 

(7) 

av,l - = W(V,-v,I,=,) 
aX _, 

dV_ -s 
-dr=HE+E(V,-V,) (9) 

v,(x, 0) = 0 (10) 

w 
ax mr=#J = 

0 

V,(O) = 1. 

(11) 

(12) 

The solution to the above set of equations is readily 
found by applying Laplace transformation (see 
Appendix). 



The solution is: 

The non-adiabatic calorimeter problem 

3. PRESENTATION OF THE SOLUTION 

v,= K-2 i fEv,-y,2)Kn 
sin&x) 
~ exp( - y,“r). 

s=1 
x sin y. 

The coefficients Kn are given by: 
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(13) 

Kn= 
Bi(E+3BiH-y,2) 

yff[Bi(Bi- I)-6BiH-2EJy,4+[9Bi2H(1 +H).+-(6BiH-2BiZ+2Bi+E)E]y,f+ Bi(Bi- 1)E2-3BiZHE 

The yn are the solutions of the equation 

tan y 3BiH$ E-y’ 

--‘(Bi-l)(y2-E)+3BiH’ Y 

surface: 

(1% V, = K-2 i ~~~-y~)K~exp(-y~~} (17) 
“=l 

For convenience equation (13) has been written in a solid average: 

form that incorporates y, = 0 separately and takes 
account of the fact that y, = -y-,, by multiplying t= v,+ti 2 (Ev,-y,Z)Kn 

the series by 2. Thus we have to consider only those 
II=1 

solutions of (15) that lie in the half-domain Real x (Y, cos Y, -sin YJ 

fY1 2 0. Y,’ sin Y, 
exp(-y$) (18) 

FIG. 1. Temperature-distance profiles within the solid for Bi = 10; H = 1; E = 1 and V, = 0 at various 
dimensionless times. With temperature time profile for fluid, surface, average and centre temperatures 

inset. 

Figure 1 shows the variation of V, with x for fluid: 
several values of r and V,, V,, V,, V, against z for 
B~=lO,H=l,E=l. 

I av, 
yf = c+jg -g 

I,% 
Ldcal,J%4id and average temperatures 

Often we are not interested in the temperature 
= K-2 f (EV,-y,2)Kn 

II=1 
distribution throughout the solid but only in the 
minims maximum and average solid temperatures. X 

(1 + y, cos y, - sin y,) 

The surface, centre and average temperatures are of Bi sin y, 
exP(-Y,2TI. (19) 

interest, as well as the fluid temperatures. These 
temperatures are given by 

4. ENERGY BALANCE SOLUTION 
cell&e: 

V,=‘k-2 ; (Ev,-y,z) 
Kny, 

We now derive separately the solution for the 

-exp(-y,2r) (16) 
special case k + co. 

n=1 sin y, In this case T. z Tq z t 3 T, and we may write 
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the governing equations as 

M&Z = -4nR%(T,- 7-f) 

with T,(O) = T,, TJ(0) = ‘FsO as before. 

Define : 

E* = UAH/4nR2k (22) 

and 

r* = 4riR%t/M,C, (23) 

to obtain the following set of dimensionless 
equations 

g&-v, 

-$ = Hg+Eyvf-V.) (25) 

v,(O) = 0 (26) 
V,(O) = I. (27) 

These equations are essentially those given by 
Kern [S] in the analysis of a heat exchanger with 
ambient loss. 

The solution is 

_ [‘-‘“2i\“)Yjexp[ (A+;)7*] 

E2-@+W’JP+A-~1 

[2-(/I-A)K][2-A-B] 

(28) 

(29) 

where /I = H+E*-1 

A = (8’ -4E*)“2. 

When Bi is very small, but not zero, the true 
solution (13) is approximated by the energy balance 
solution (28) with E* and z* the following functions 
ofE,Bi,z: 

E* = E/3Bi (30) 

7* = 3Bir. (31) 

We recall that for simpler versions of the problem 
(H = E = 0)Bi c 0.1 is an accepted criterion for 
applying the energy balance solution. We see from 
Fig. 2 that for the general problem such a criterion is 
safe for t > 0.01 and possibly for smaller 7 as well. 

Note that the error in the energy balance solution 
now has two components, E, and sl: 

true solution : 

t = f(z)+ Kg(r) (32) 

energy balance solution : 

v, = f(7)Cx+&,(7)]+1/,9(7)[1+&2(7)1 (33) 

fractional error: 

and hence for any fixed r 

Er 
-+E, as Vu-b0 

+ &2 as V, --, co 

Er has no proper maximum, so the larger of si and 
a2 is the maximum. 

In Fig. 2 f(7), g(7), E, (T), E*(T) are plotted against T 
for 0.01 c 7 c 10 for the case Bi = 0.1, H = 1, E = 1. 
The functions analogous to f and g in the fluid, 
surface and centre temperatures (jb,fC,ff ; g,, gc, g,) 
are also plotted, the functions analogous to sl and e2 
were too small to be plotted for the fluid tempera- 
ture. Note that on the graph the centre, average and 
surface temperatures coincide. 

From Fig. 2 [Erl < 3%. 
The energy balance solution is clearly much easier 

to apply than the exact solution since we do not need 
to calculate the roots of a transcendental equation. 
In addition the full solution may become very 
sensitive to the accuracy of the first root of the 
transcendental equation. However, this phenomenon 
occurs predominantly at very small Biot numbers 
where the energy balance solution is to be preferred 
anyway. 

5. LIMITING SOLUTIONS FOR HIGH 
AND LOW PARAMETER VALUES 

For cases where one of the parameters Bi, H, E 
has a value that is much larger or smaller than the 
others, the limiting solutions given below will 
provide useful approximations and are considerably 
easier to use than the exact result. These solutions 
fall into two classes, those that may be obtained by 
simplifying the general solution (13) and those which 
cannot be obtained in this way because some of the 
equations (Q-(12) become meaningless. 

(1) Bi -+ a, and H, E stay finite ; the transcenden- 
tal equation (15) reduces to 

tan y 3H 
-= 

Y y2-E+3H 

and the coefficients Kn reduce to 

(34) 

3H 
Kn = 

y,“+[9H(l+H)-2E]y,2+Ez-3EH 
. (35) 

Note that with E +O our solution reduces to 
Paterson’s [3]. 
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DIMENSIONLESS ‘.a - 
TEMPERATURE 

d-r”.=0 O.6- 

1“ O.,- 

FIG. 2. Dimensionless temperature-time profiles for low Biot number (Bi = 0.1; H = 1; C = 1). 

(2) Bi -+ 0 and H, E stay finite; we have 

tan y 
---= 1 (36) 

Y 
and 

Kn=O. (37) 

This implies V, = V,, so the result from equations 
(13)-(15) is not valid. This happens because Bi = 0 
implies dV,/ax = 0 and equation (7) becomes 0 = 0, 
so (7) and (8) fall away and are replaced by (20), (11) 
is no longer necessary and the remaining equations 
(9), (lo), (12) together with (20) lead to the energy 
balance solution (28). 

(3) H + 0; E, Bi non-zero. Physically this is the 
case of a very large fluid extent losing heat to 
ambient, so the fluid temperature should depend 
only on E. H = 0 implies there is no solid, so Bi is 
not defined, and equations (7), (8), (lo), (11) become 
meaningless. (9) reduces to 

-@pyJ 

where 

Vf = V,+(V,o-Va)exp(-7t) (39) 

UAt 
rt=ET=p. 

M&f 

(4) H -+ co; E, Bi finite. This implies M,C, -+ co 
(if M,C, -+ 0, E + co) and is not a well posed 
problem. 

(5) E + 0; H, Bi finite. This reduces to the case 
treated in our earlier paper [2]. Note that in the 
present formulation V, is defined relative to the 
ambient temperature, but the ambient is no longer 
involved in the process. However, for E # 0, T. can 
be interpreted as the equilibrium temperature of the 
system. So redefine T. for E = 0 to be the equilib- 
rium temperature 

T,= M/C,T,o+M,C,T,, 

M/C, + MS, 

and regenerate our earlier result [2], which in the 
present nomenclature is: 

tany 3BiH - y2 

(Bi-l)y2+3BiH 
(40) 

Y 

Kn(EK- y,‘) = 

Bi(3BiH - y,‘) 

y, -f[Bi(Bi-l)-6BiH]y,f+9Bi2H(1+H)’ 
(41) 

(6) E --) co ; H, Bi finite. 
tany -1 
-= 

Y (Bi- 1) 
(42) 

Kn(Et- y,“) = 
t?iV, 

y,f+Bi(Bi-1)’ 
(43) 

As expected, H is no longer a parameter since E = co 
implies that the ambient is a continuation of the fluid 
[since (9) implies V, = Va] so we have heat transfer 
to an infinite fluid at V,. 

The above solution may be compared to Carslaw 
and Jaeger’s [9] solution for heat transfer to an 
infinite fluid, which in our nomenclature is: 

v 2 
s=-Cexp(-y,2r) 

yi+(Bi-1)’ 

v, x yi+Bi(Bi-1) 

5 
1 

x sin(y,x) x sin(y,x) dx. (44) 
0 

To show that the solutions are equivalent we must 
show that 

[Y,?+(Bi-1)2] txsin(y.x)dx =A. 
s 0 smy, ’ 

Left hand side: 

LHS = [y,‘+ (Bi - 1)2] (siny,-yy,cosy,), (45) 
2 

Y” 

Square equation (42), invert and add yf to each side 
to get 

y’(l+cot’y) = y2+(Bi-1)2 (46) 
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use l/sin2 Y = 1 +cotZ y in (46), and (46) in (45) to 

get 

1 -YncotYn Bi 
LHS = =-, 

sin y, sin y, 

So equation (45) is an identity and therefore the 
solutions are the same. 

6. APPLICATION TO CONTINUOUS PROCESSES 

There are several systems of industrial importance 
that obey the same equations as the non-adiabatic 
calorimeter. 

(1) Co-current moving bed contactor (see Fig. 3) 
If the fluid and solid streams are both in plug flow 

then the time that the solids have spent in the 
contactor when they are at position I is given by 

lP,S 
t==-. (47) 

Equations (l), (2), (4)-(6) apply. 
The overall heat balance on the element of 

contactor between 1 and I+ dl is 

-G,C,dT, = G,C,dz+ U(I)A; (T/- q). (48) 

Under many circumstances the assumption that 
Lr(l) = U = constant is approximately true and in 
that case equations (l), (2), (48), (4)-(6) lead to the 
set of equations (7)-(12). Where V,, V/, I”, x, Bi have 
the same definition as previously and T, H and E are 
given by 

ap,Sl 
T=G,RZ 

E= 
UAR2G, 

aG/C,p,S 
(51) 

In contrast with the calorimeter where 0 < T -c co 
we now have 

ao.SL 
o<T<-=--. 

G,R2 

This does not affect the solution since we can 
increase the length of the column from L to L’ 
without altering the solid or fluid temperature fields 
in the section of column 0 < 1-z L. This carries the 
implication that it is possible to find the length 
required for a given duty without iteration. 

As is the case with heat exchangers with ambient 
loss [8], it is not always possible to design a 
contactor for a given duty when the value of U is 
specified. 

For instance, if we are attempting to heat up a 
solid using a hot fluid, heat loss to the ambient may 
be so large that the solid can never reach the desired 
temperature. This is because the solid average 
temperature reaches a maximum whose position and 

CONTACTOR 

LENGTtl L 

SURFACE AREA A 

AMGIENT TEMPERATURE Ta 

MMENSIONLESS 
TEMPERATURE “. 

SOL10 OUTLET 
AVERAGE TEMPERATURE f, (L) 

FLUID OUTLET 
TEMPERATURE T, IL1 

FIG. 3. Co-current moving bed contactor. 

SOLIDS HLET FLUID CUTLET 
MASS RATE G. MASS RATE 0, 

t A 
SOLID OUTLET 

AVERAGE TEMPERATURE f, CL, 
FLU0 lNLET 
TEMPERATURE qi. T, IL1 

FIG. 4. Counter-current moving bed contactor. 

value are functions of the magnitude of heat loss to 
the ambient. One application of the above model 
would be the optimisation of the insulation thickness 
on a high temperature contactor. 

(2) Counter-current moving bed contactor (see Fig. 4) 
The governing equations are almost identical to 

those of the co-current case, differing only in the heat 
balance equation which becomes 

G,C,dT, = G,C.dt+U(l)A;(T,-T.). (52) 
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So in the present case we have to redefine E and H, 
i.e. 
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E= - 
UAR2G, 

aG&& 

CC, 
H=-:. 

Note that E and H are now always negative. And 
equations (7~(12) can be generated by defining the 
other parameters and variables in exactly the same 
way as in the co-current case. 

It is seen that the problem has been transformed 
into a hypothetical non-adiabatic calorimeter con- 
taining a fluid of negative heat capacity, and that we 
have specified the outlet rather than the inlet fluid 
temperature as T,,. Without this modification a 
change in length of the contactor, leaving 7’,i fixed, 
would change the temperature profile throughout 
the contactor and the domain of z would no longer 
be equivalent to a semi-infinite domain. Although in 
practice we would not always know the fluid outlet 
temperature to start with, it is easily determined as 
foilows: 

Tfi - TO 
T/o - T,o 

= v,ll=p 

The solution V, is known in the form 

(55) 

hence 

v, = f(t) + 
T-T,, 

-g(z) 
50 - To 

(56) 

(‘Gi- T,) 
%J-~*= flr=L +IT,-T,)fll=L. 

gll=L (5f) 

Thus T,, - T,, may be calculated directly given L 
and the other parameters and hence the other 
dimensionless temperatures easily converted to ac- 
tual temperatures. 

On the other hand, this means that calculation of 
column length required for a given outlet solids 
average temperature requires iteration on L, unlike 
the co-current case where L may be calculated 
directly. 

The remarks about feasibility and optimisation of 
insulation thickness made for the co-current case still 

apply. 

(3) Cascade of~uidised beds (see Fig. 5) 
If there are sufficiently many stages, the fluidised 

bed cascade behaves approximately like a counter- 
current plug flow contactor and may be treated as 
such (see the previous case). With few stages, on the 
other hand, the analysis of Kasten and Amundson 
[lo] may be used if heat loss to the ambient is small. 

In passing through each fluid&d bed of the 
cascade a particle spends some time in counter- 
current flow, some in cross flow and some in co- 
current flow. So the performance of such a cascade, 
with a dimensionless mean residence time f, would 
be better than that of a co-current contactor of 

FLUID OUTLET 

FLUID INLET 

FIG. 5. Cascade of fluidised beds. 

MASS RATE G, 
TEMPERATWIE T, (11 

FLUID WTLET 

SOLIOS FLUID 
MASS M, MASS ENCLOSE0 M, 
HEAT CAPACiTI C, TEMPERATURE Tf 11) 
IUlTtAL 
TEMFERATURE T,, 

[ 

t 

1 FLU10 INLET 

MASS RATE G, 
TEMPERATURE Ta 
“EAT CAFACITI C, 

NOTE ) 
CONOITIONS MUST BE SUCH THAT ASSUMPTlON OF A 
SINGLE BULK FLUID TEMPERATURE IS REASONABLE, 
FOR INSTANCE IF AGITATION BY SOuD IS LARGE 

FIG. 6. Fluidised bed with a batch of solids and a stream of 
fluid. 

dimensionless length i and worse than that of a 
similar counter-current contactor (the Biot number 
applicable to the cascade, not that which would 
apply to a true plug flow contactor must of course be 
used). So the solution for the co-current contactor 
would lead to a conservative design for the cascade 
and the performance of the equivalent counter- 
current contactor would be a measure of how 
conservative the design is. 

(4) Fluidised bed with a batch of solids and continuous 
pow of~uid (see Fig. 6) 

When it is reasonable to assume that the fluid has 
a bulk temperature T/(t), equations (I), (2), (44tf6) 
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apply and the energy balance reads 

-M,C,dTI = M,C,d~+G,G,(T,-T,)dt. (58) 

We can make the system of equations (1 ), (2), (58), 
(4)-(c) dimensionless and generate equations 
(7)-(12) by defining Si, H, x, Zj V,, Vs, V, as in the 
batch case and further 

G,R2 
E=----. (59) 

M,ra 
Nere ?& is the inlet fluid temperature and E is the 

dimen~onless reciprocal mean residence time of the 
fluid. 

The above case has a fairly common mass transfer 
analogue, namely the drying of grain or peas, where 
moisture movement is diffusion controlled inside the 
solid and convection controlled at the surface. For 
such a system, the mass-transfer problem fits the 
above model and the heat-transfer problem is 
essentially that of transfer from the fluid through a 
film to a heat sink on the sofid surface and is thus 
easily dealt with. 

7. DISCUSSiON OF THE ROOTS OF THE 
~ANSC~DENTAL EQUATION 

In cases where we cannot use the energy balance 
solution, it is necessary to solve the transcendental 
equation : 

tan y 3BiH+E-Y2 

- = (Bi-l)(y2-E)+3BiH’ Y 
(151 

The series solution for the temperature contains 
terms in exp( - y,$f In the batch case y,, must be real 
for all n, otherwise the tem~ratnre would not tend 
to V, as time becomes infinite. 

In the continuous-counter-current application this 
is no longer true and we expect exponential growth 
terms in the T vs I profile if the solids heat capacity 
rate is greater than that of the fluid so that the fluid 
undergoes most of its temperature change near its 

inlet, i.e. the solid outlet. So for fi < - 1 there are 
some purely imaginary roots whereas for H > - 1 all 
the roots are real. 

More general complex roots may always be ruled 
out since they contribute an oscillating component 
to the solution, which is physically impossible. Still, 
when solving equation (15) for its roots, one has to 
take care in finding all the roots that play a 
signi~~nt part in the saiutiott. A quaiitative check 
may be obtained from the answer at 5 = 0. If the 
latter is not satisfactory one may examine one of the 
following possible reasons: (a) not enough terms 
considered, i.e. truncation error; (b) roots not 
located accurately enough ; (c) roots that are signi- 
ficant have been inadvertently omitted. 

The first and second are easy to deal with, the 
third is not so easily dealt with. However, if there is 
reason to suspect that roots have been omitted, it is 
worthwhile to draw a graph of 

3BiH+E-y2 
rPfvf = ~and~~y~ = 3~~H+~~~_~~~y~_~~ 

against y 

such as Fig. 7 which is for Bi = 0.5, H = I, E = I. 
Depending on the parameter values there may be 

one, two or even no roots within an interval from 
(n-&n to (n+#n. 

When H < -1 there are also imaginary roots of 
(15), i.e. roots of: 

tanh ~1 w2+E+3HBi 
-z 

W (1 -Bi)fu~2+E)+3HBi 
(60) 

where w = -iy. 
Again a graph may be useful. 

8. CONCL.USi0N.S 

We have solved the problem of a solid sphere in 
contact with a fixed mass of fluid, which exchanges 
heat simultaneously with the solid and with the 
ambient. The general solution for a solid of finite 

I I 
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thermai conductivity is available as an infinite series 
with four parameters, Bi, H, E and V,. Few terms of 
the series suffice for most applications because the 
terms contain a strong exponential decay, of the 
form exp( - y,2r). 

Some of the problems which are encountered in 
solving the transcendental equation for the roots yn 
may be overcome by applying appropriate checks or 
drawing an appropriate graph. 

The results find a~~li~t~on in the analysis of, and 
design of equipment for, continuous sdid-fluid 
exchange processes. Various simplified solutions for 
limiting values of the parameters Bi, N, E, are 
presented. Among these is the energy balance 
solution for small Bi, which reduces the problem to 
that of a double-pipe heat exchanger with ambient 
loss. 
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d2 
sxq = -xy 

dx* 

(65) leads to 

(67) and (64) lead to 

t = M(w)(wcoshw-sinhw)/wZ. 

l+EK 

us =O 

7 - 3HB(w)(w cash w - sinh w) 

w2+E 

Apply (tie)-(68) in (63) to obtain 

3= 
Bi(l C EV,/w2) 

(~~+E+3HBi)wco~w-C(l-Bi)~w~-~E)+3HBiJsinhw’ 

Now use Caucby’s integral theorem on the Mellin integral to invert the traasform 

(69) 
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where s, are the isolated singularities of F on the complex plane, and y is an arbitrary number such that real {s,} > y for all 
i. 

si will be the poles of B(w), i.e. si = wf where wi are the roots of: 

tanh w w2+E+3HBi 
-= 

W (1 -Bi)(w’+E)+ 3HBi ’ 

Note that w,, = 0 is also a pole of B, but has been excluded from equation (70) by performing algebra on the 
denominator of B that is invalid if w = 0. 

sinh(wx) 
Treat w0 separately because ~ IS also zero here. 

X 

Use Res F(s) = lim (s - s,)F(s), which is the definition of the residue at a simple pole, for s0 = wt = 0. We get 
*=,, s-l, 

Res [e”F(s)] = Iim 
sinh wx 

w*B(w)- exp(w’r) 
*=0 w-0 c x 1 

= lim w’B(w) 
w-0 

= v,. 

For the other singularities, which are all simple poles, use 

Res F(s, X3 7) F(s, X, 7) . 2wF(wZ, x, 7) 
-=]~-= llm 

I = s. G(s) s-s, dG w-w dG(W*) 

ds dw 

so 

Res 
sinh(s 

enB(s)l/’ = 
sinh w,x 
- ewfr Res B(s) 10 . 

S=S, X X a=lv: 

After some differentiation we get 

Res B(s)“’ = lim 
ZwBi(l +EV,,/w’) 

,=,i w-w, [~~+E+3HBi-2(1-Bi)]wsinhw(3w*+E-[1-Bi][w~+E])cosh~’ 

From (68) we get an expression for cash w in terms of w and sinh w 

cash w, = (1 -WM+E)+3HBi sinh w,. 
wi(wf + E + 3HBi) ’ 

Res B(s)“’ = 
Zwf(wf +E+ 3HBi)Bi(l +EVJwf) 

S=I, sinhwi{[wf+E+3HBi-2(1-Bi)]w~(wf+E+3HBi)+[3w~+E-(1-Bi)(w~+E)][(1+Bi)(w~+E)+3HBi]} 

Now, since all the solutions, wi, are purely imaginary (in the batch case), we substitute yi = ( -wf)r/2 = iw, in the 
equations, purely for convenience. 

In this manner we obtain equations (13)-(H). 

LE PROBLEME DU CALORIMETRE NON ADIABATIQUE ET SON 
APPLICATION AUX MECANISMES DE TRANSFERT DANS LES 

SUSPENSIONS SOLIDES 

R&arme-On r&out le probleme du transfert simultane de chaleur dun fluide d&endue tinie vers 
I’ambiance et vers un solide de conductivitt thermique finie. La solution genntale est sous fonne dune 
drie intinie en fonction du nombre de Biot, du rapport H d’etendue thetmique, du parambtre E de perte 
ambiante et de la temperature ambiante V,; la &ie montre une forte decroissance exponentielle et il suffit 
de peu de termes pour la plupart des applications. La solution est une extension et une amelioration de 
celle du problbme classique du calorimdtre. Les rbultats trouvent une application dans I’analyse (et dans 
le dimensionnement du materiel) de I’echange continu avec des solides en suspension. La forme de la 
solution est suffisamment simple pour permettre le calcul d’optimisation de l’epaisseur d’isolant, du temps 
de residence et d’autres paramitres. On presente des solutions simples pour les valeurs limites des 

paramitres, par exemple, pour le tube annulaire de l’echangeur de chaleur avec perte a I’ambiance. 

DASVERALLGEMEINERTEKALORIMETERPROBLEMUNDSEINEUBERTRAGUNG 
AUFAUSTAUSCHPROZESSEINFLUID-FESTSTOFF-GEMISCHEN 

ZlePmmenfPssung-Es wird der gleichzeitige W&me- oder Stoffaustausch zwischen einem endlich 
ausgedehnten Fluid, einem endlich ausgedehnten Feststoff von endlicher Leitfiiigkeit und einer 
unendlich ausgedehnten Umgebungsatmosphare analytisch behandelt. Die Losung des derart verallge- 
meinerten Kalorimeterproblems llsst sich verschiedenartig interpretieren, so dam eine Reihe wichtiger 
Austauschprozesse in Gas-Feststoff-Systemen damit ausgelegt werden kiinnen. Wegen der notwendigen 
Vereinfachung des Problems sind die zu erwartenden Ergebnisse zwar nicht immer numerisch exakt, 
andererseits ermoglicht die einfache Form der Losung weiterfiihrende Untersuchungen, etwa zum Zwecke 

der Prozessoptimierung. 
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3AflAYA HEA~~A6AT~qECKOrO KAnOP~~ETPA M EE nP~MEHEH~E 
K FlPOUECCAM nEPEHOCA B CYCl’lEH3kUlX TBEPfibiX ~ACTMLi 

Atnnnmn-Ilpe~~c~aaanerlo peluetibie 3aRawi oworspehieiifioro nepew3Ca Tenna OT KoHewioro 

O6l&b4a ~HLIKOCTH B OtipyXCilKWly~ CpeJly H K TBepROMy TeJly C KOHe’lHOii TennOnpOBOLlHOCTbK). 

06ulee peureme mti~cn B mine 6ecKoHeworo pnna. B XoTopbdl B xaYecT6e 6e3pa3hiepiiblx napa- 

MeTpOB BKJliO’IeHM: WCJlO 6HO. FlapaMeTp TeIUlOBOrO pWIlH~HWl H, napaMeTp nOTepb B OKpy- 

xamuyto cpeny E H reb4nepaTypa orpynratolueii cpenbi v.. AaHHbIli pm HMeeT 3KCnOHeHuWa,lbHyK) 

CXOIIHMOCTL, TaK ‘IT0 AJDI QUKTWeCKHX ueneii JlOCTaTOqHO HeCKOnbKWX ‘UICHOB pma. PeIUeHHe 

npencTaBnneT co6oii o6o6uieHwe H MOnH~HKaumo KnaccHrecKoii sanawi KanopHMeTpa. Pe3ynbTaTbl 

MoryT Hcnonb3onaTbcK mr atfanif3a npouecca HenpepbIeHoro Tennoo6MeHa CO B3BeWeHHbIMU 

TBepLWMH ‘,aCTHuaMX H lUU, pW,tTa COOTBeTCTBytou&eii auna~Typb1. PelueHHe AMeCT IIOBOJfbHO 

upOCTOfi SW H MOYeT HCtlOnb308aTbCSl QRR paCViTa OuTHMaflbHO@ TOnu&fHkJ N30,WuHH. BpMeHH 

KoHTaKTa qacmu i4 npyrwx napaue-rpoe npouecca. fina npenenbHb5x 3siasewii napaMeTpoe 

np~~AeH~ yn~meuHbIe pemeeen, r(ax HanpuMep, mn Tefl~~MeHH~Ka Tma ccTpy6a B TpyFie)t 

npw uanwim noTepb Tenna ~0~py~a~my~c~Ry. 


